Kv2.1 potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence.
نویسندگان
چکیده
Ion channel localization to specific cell surface regions is essential for proper neuronal function. The Kv2.1 K+ channel forms large clusters on the plasma membrane of hippocampal neurons and transfected human embryonic kidney (HEK) cells. Using live cell imaging, we address mechanisms underlying this Kv2.1 clustering in both HEK cells and cultured hippocampal neurons. The Kv2.1-containing surface clusters have properties unlike those expected for a scaffolding protein bound channel. After channel is delivered to the plasma membrane via intracellular transport vesicles, it remains localized at the insertion site. Fluorescence recovery after photobleaching (FRAP) and quantum dot tracking experiments indicate that channel within the surface cluster is mobile (FRAP, tau = 14.1 +/- 1.5 and 11.5 +/- 6.1 s in HEK cells and neurons, respectively). The cluster perimeter is not static, because after fusion of adjacent clusters, green fluorescent protein (GFP)-Kv2.1 completely exchanged between the two domains within 60 s. Treatment of hippocampal neurons expressing GFP-Kv2.1 with 5 microM latrunculin A resulted in a significant increase in average cluster size from 0.89 +/- 0.16 microm2 to 12.15 +/- 1.4 microm2 with a concomitant decrease in cluster number. Additionally, Kv2.1 was no longer restricted to the cell body, suggesting a role for cortical actin in both cluster maintenance and localization. Thus, Kv2.1 surface domains likely trap mobile Kv2.1 channels within a well defined, but fluid, perimeter rather than being tightly bound to a scaffolding protein-containing complex. Channel moves directly into these clusters via trafficking vesicles. Such domains allow for efficient trafficking to the cell surface while sequestering channel with signaling proteins.
منابع مشابه
A cytoskeletal-based perimeter fence selectively corrals a sub-population of cell surface Kv2.1 channels.
The Kv2.1 delayed-rectifier channel trafficks to 1-3 microm(2) clusters on the surface of neurons and transfected HEK cells. Single quantum dot (Qdot) tracking and FRAP approaches were used to quantify the diffusion of GFP-labeled Kv2.1 channels on the cell surface and address the mechanisms underlying the formation of these unique membrane structures. Mean square displacement analysis of singl...
متن کاملTargeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains.
Voltage-gated potassium (Kv) channels regulate action potential duration in nerve and muscle; therefore changes in the number and location of surface channels can profoundly influence electrical excitability. To investigate trafficking of Kv2.1, 1.4 and 1.3 within the plasma membrane, we combined the expression of fluorescent protein-tagged Kv channels with live cell confocal imaging. Kv2.1 exh...
متن کاملKv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane
Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is post...
متن کاملRegulation of Kv2.1 K(+) conductance by cell surface channel density.
The Kv2.1 voltage-gated K(+) channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites, and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are nonconducting. Using total internal reflection fluorescence microscopy, the number of GFP-tagged ...
متن کاملSUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons
Voltage-gated Kv2.1 potassium channels are important in the brain for determining activity-dependent excitability. Small ubiquitin-like modifier proteins (SUMOs) regulate function through reversible, enzyme-mediated conjugation to target lysine(s). Here, sumoylation of Kv2.1 in hippocampal neurons is shown to regulate firing by shifting the half-maximal activation voltage (V(1/2)) of channels u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 38 شماره
صفحات -
تاریخ انتشار 2006